If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-16q-17=0
a = 1; b = -16; c = -17;
Δ = b2-4ac
Δ = -162-4·1·(-17)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-18}{2*1}=\frac{-2}{2} =-1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+18}{2*1}=\frac{34}{2} =17 $
| 1/6(x-3)-4=-3.2 | | 32=4(w-3) | | 19.2x/487.64=Y | | x^2=(18-x)/9 | | x(9+x)=162 | | 4(3+2k)=36 | | 3a/7-1=5 | | 2d^2+10d+12=0 | | 7a+8=21=4a | | 17m-6=10m-15 | | X2+12x-15=0 | | -19=m+17 | | (x)(x)/(0.068409-x)=1.80 | | 9x-6-15+14-2-7x-3x+2x=3 | | (-2)×(-x)×(x+3)=0 | | -6(5y-3)+4y=-216 | | 5+2x-6=x-11+6x | | 6-7x+4=-8x+3 | | 2x+45=6x-13 | | 5x-3x=x-2 | | 11x-5+6-4x=6x+1 | | 8x+7=7x-6 | | 39π=y | | 3x+18=33−2x | | 6x+12=102−4x | | 9x+7=55+3x | | 9x+7=34+6x | | x+x+7=7 | | 2x-3=-3x+2+x | | 4x+34=13-38 | | 5÷6=c+1÷6 | | 4x+34=38 |